Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2009

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Thursday 21 May 2009 1.30 pm to 2.45 pm

For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae book.

Time allowed

1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Book is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

			Answer all questions in t	the spaces provided	l.
(a)	Expl	ain what is	meant by an isotope.		
					(2 mar
(b)	The	incomplete	table shows information f	for two isotopes of	uranium.
			number of protons	number of neutrons	specific charge of nucleus/
first	t isoto	pe	number of protons 92		
	t isoto			neutrons	
		otope		neutrons 143	nucleus/
seco	ond is	Write the table.	92	neutrons 143 e in the heading of	nucleus/

1	(b)	(iii)	Calculate the specific charge of the first isotope and write this in the table.
			(3 marks)
1	(b)	(iv)	Calculate the number of neutrons in the second isotope and put this number in the table
			(3 marks)

10

Turn over for the next question

2	their	trons with a range of kinetic energies strike atoms of a particular element which are in <i>ground state</i> . As a result of these collisions photons of various frequencies are emitted ome of the atoms.
2	(a)	Explain what is meant by the ground state of an atom and describe the process that is taking place in the atoms emitting photons.
		The quality of your written communication will be assessed in this question.
		(6 marks)

2 (b) The table below shows how the kinetic energies of electrons with different incident energies may change after collisions with atoms.

	kinetic energy of electron before collision/eV	kinetic energy of electron after collision/eV
First electron	5.5	5.5
Second electron	9.0	1.0

(b)	(i)	Explain why one of the electrons loses energy while the other does not.
		(2 marks)
(b)	(ii)	Convert the energy of 9.0 eV into joules
		(2 marks)
(b)	(iii)	Calculate the maximum frequency of the photon emitted when the 9.0 ev electron collides with an atom.
		answerHz (3 marks)
	(b)	

Turn over >

13

3	(a)	The	$\sum_{i=1}^{+}$ particle is a baryon with strangeness -1 .
3	(a)	(i)	How many quarks does the \sum^+ particle contain?
			answer(1 mark)
3	(a)	(ii)	How many of the quarks are strange?
·	(u)	(11)	Trow many or the quarks are strange.
			answer
			(1 mark)
3	(b)	The	$\sum_{i=1}^{+}$ decays in the following reaction
			$\sum^+ \longrightarrow \pi^+ + n$
3	(b)	(i)	State two quantities that are conserved in this reaction.
			(2 marks)
3	(b)	(ii)	State a quantity that is not conserved in this reaction.
			(1 mark)
3	(b)	(iii)	What interaction is responsible for this reaction?
			(1 mark)
3	(b)	(iv)	Into what particle will the neutron formed in this reaction eventually decay?
			(1 mark)

4			nochromatic light is shone on a clean metal surface, electrons are emitted from the e to the photoelectric effect.
4	(a)	State	and explain the effect on the emitted electrons of
4	(a)	(i)	increasing the frequency of the light,
			(2 marks)
4	(a)	(ii)	increasing the intensity of the light.
			(2 marks)
4	(b)	rejec	wave model was once an accepted explanation for the nature of light. It was ted when validated evidence was used to support a particle model of the nature of . Explain what is meant by validated evidence .
			(2 marks)
			Question 4 continues on the next page

4	(c)	The	threshold frequency of lithium is $5.5 \times 10^{14} \mathrm{Hz}$.
4	(c)	(i)	Calculate the work function of lithium, stating an appropriate unit,
			answer
4	(c)	(ii)	Calculate the maximum kinetic energy of the emitted electrons when light of frequency 6.2×10^{14} Hz is incident on the surface of a sample of lithium.
			answerJ
			(3 marks)

12

5	A stu	ident	wishes to collect data so he can plot the <i>I-V</i> curve for a semiconductor diode.					
5	(a)	(i)	Draw a suitable diagram of the circuit that would enable the student to collect this data.					
			(3 marks)					
5	(a)	(ii)	Describe the procedure the student would follow in order to obtain an I - V curve for the semiconductor diode.					
			The quality of your written communication will be assessed in this question.					
			(6 marks)					
			(o marks)					

5 (b) Figure 1 shows an arrangement of a semiconducting diode and two resistors.

A 12.0 V battery is connected with its positive terminal to A and negative terminal to B.

5 (b) (i) Calculate the current in the $8.0\,\Omega$ resistor

(2 marks)

5 (b) (ii) Calculate the current in the $4.0\,\Omega$ resistor if the p.d. across the diode, when in forward bias, is $0.65\,V$ expressing your answer to an appropriate number of significant figures.

	 	•••••

(3 marks)

14

Turn over for the next question

6 Figure 2 shows an ac waveform that is displayed on an oscilloscope screen.

Figure 2

The time base of the oscilloscope is set at 1.5 ms per division and the y-gain at 1.5 V per division.

6	(a)	For t	he ac waveform shown,
6	(a)	(i)	Calculate the frequency
			answerHz (3 marks)
6	(a)	(ii)	Calculate the peak voltage
			answerV
			(2 marks)

9

6	(a)	(iii)	the rms voltage
			answerV
			(2 marks)
6	(b)	State	e and explain the effect on the oscilloscope trace if the time base is switched off.
			(2 marks)

7	A ca	r battery has an emf of 12 V and an internal resistance of $9.5 \times 10^{-3} \Omega$. When the battery ed to start a car the current through the battery is 420 A.		
7	(a)	Calculate the voltage across the terminals of the battery, when the current through the battery is 420 A.		
		answerV		
		(2 marks)		
		answer		
		(3 marks)		

END OF QUESTIONS

General Certificate of Education Advanced Subsidiary Examination June 2009

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Data and Formulae Booklet

DATA

FUNDAMENTAL CONSTANTS AND VALUES

TUNDAMENTAL CONSTANTS AND V	ALCES		
Quantity ·	Symbol	Value	· Units
speed of light in vacuo	С	3.00×10^{8}	$m s^{-1}$
permeability of free space	$\mu_{ m o}$	$4\pi \times 10^{-7}$	$H m^{-1}$
permittivity of free space	\mathcal{E}_{0}	8.85×10^{-12}	$F m^{-1}$
charge of electron	e	-1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N\ m^2\ kg^{-2}$
the Avogadro constant	N_{A}	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$J \ K^{-l} \ mol^{-l}$
the Boltzmann constant	k	1.38×10^{-23}	$\mathrm{J}~\mathrm{K}^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{\rm e}$	1.76×10^{11}	$\mathrm{C}\ \mathrm{kg}^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3)\times10^{-27}$	kg
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	$\mathrm{C}\mathrm{kg}^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5)\times10^{-27}$	kg
gravitational field strength	g	9.81	$N kg^{-1}$
acceleration due to gravity	g	9.81	$m s^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
volume of cylinder	$=\pi r^2 h$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

8,			
class	name	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	$\nu_{ m e}$	0
		v_{μ}	0
	electron	$\frac{v_{\mu}}{e^{\frac{\pm}{u}}}$	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K^{\pm}	493.821
		K^0	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number
particles: e^- , v_e ; μ^- , v_μ	+1
antiparticles: $e^+, \overline{\nu_e}$; $\mu^+, \overline{\nu_\mu}$	-1

Photons and Energy Levels

photon energy $E = hf = hc / \lambda$ photoelectricity $hf = \phi + E_{K \text{ (max)}}$ energy levels $hf = E_1 - E_2$ de Broglie Wavelength $\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and $I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$ emf $\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$

resistors in series $R = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

resistivity $\rho = \frac{RA}{L}$

power $P = VI = I^{2}R = \frac{V^{2}}{R}$

alternating current $I_{\text{rms}} = \frac{I_0}{\sqrt{2}}$ $V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$

MECHANICS

moments moment = Fd

velocity and $v = \frac{\Delta s}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$

equations of motion v = u + at $s = \frac{(u+v)}{2}t$

 $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$

force F = ma

work, energy and $W = F s \cos \theta$ power $E_K = \frac{1}{2} m v^2$ $\Delta E_P = mg\Delta h$ $P = \frac{\Delta W}{\Delta t}$, P = Fv

 $efficiency = \frac{\text{useful output power}}{\text{input power}}$

MATERIALS

density $\rho = \frac{m}{V}$ Hooke's law $F = k \Delta L$

Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$ tensile stress = $\frac{F}{A}$ tensile strain = $\frac{\Delta L}{I}$

energy $E = \frac{1}{2}F\Delta L$ stored

WAVES

wave speed $c = f\lambda$ period $T = \frac{1}{f}$ fringe spacing $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$ grating

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle $\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$